Short Trade on MOVE
The 02 Aug 2025 at 07:35:11
With 14248.8662 MOVE at 0.128$ per unit.
Position size of 1823.8549 $
Take profit at 0.1272 (0.62 %) and Stop Loss at 0.1286 (0.47 %)
That's a 1.33 RR TradePrediction 1 | Probability |
---|---|
Weak Trade
|
0.96 |
Prediction 2 | Probability |
---|---|
0 | 0.82 |
Prediction 3 | Probability |
---|---|
0 | 0.87 |
Indicators:
Position size of 1823.8549 $
Take profit at 0.1272 (0.62 %) and Stop Loss at 0.1286 (0.47 %)
That's a 1.33 RR TradeSimilar Trade Score: 20.77 %
Start at | Closed at | Duration |
---|---|---|
02 Aug 2025 07:35:11 |
02 Aug 2025 08:00:00 |
24 minutes |
Entry | Stop Loss | Take Profit | RR | Current Price |
---|---|---|---|---|
0.128 | 0.1286 | 0.1272 | 1.33 | 0.1274 |
Pour calculer le Risk-Reward Ratio (RRR) sur un trade short, on utilise la formule :
RRR = Distance jusqu'au Take Profit ÷ Distance jusqu'au Stop Loss
Détails du trade:
Calcul:
Risque (distance jusqu'au stop loss) :
SL - E = 0.1286 - 0.128 = 0.00059999999999999
Récompense (distance jusqu'au take profit):
E - TP = 0.128 - 0.1272 = 0.0008
Risk-Reward Ratio:
RRR = TP_DIST / SL_DIST = 0.0008 / 0.00059999999999999 = 1.3333
Amount | Margin | Quantity | Leverage |
---|---|---|---|
1823.8549 | 100 | 14248.8662 | 18.24 |
1. Déterminer le montant risqué sur ce trade
Risk Amount = Capital x Risk per trade
Paramètres:
Risk Amount = 100 x 0.08 = 8
Donc, tu es prêt à perdre 8$ maximum sur ce trade
2. Calcul Risk per Share / Nombre d'unité à acheter
Taille de position = Risk Amount / Distance Stop Loss
Taille de position USD = Taille de position x Entry Price
Paramètres:
Taille de position = 8 / 0.00059999999999999 = 13333.33
Taille de position USD = 13333.33 x 0.128 = 1706.67
Donc, tu peux acheter 13333.33 avec un stoploss a 0.1286
Avec un position size USD de 1706.67$
3. Calcul de la PERTE potentielle
Perte = Taille de position x Distance Stop Loss
Perte = 13333.33 x 0.00059999999999999 = 8
Si Stop Loss atteint, tu perdras 8$
4. Calcul du GAIN potentielle
Gain = Taille de position x Distance Take Profit
Perte = 13333.33 x 0.0008 = 10.67
Si Take Profit atteint, tu gagneras 10.67$
Résumé
TP % Target | TP $ Target |
---|---|
0.62 % | 11.4 $ |
SL % Target | SL $ Target |
---|---|
0.47 % | 8.55 $ |
PNL | PNL % |
---|---|
11.4 $ | 0.63 |
Max Drawdown | Max Drawdown / SL Ratio | Candles in Entry |
---|---|---|
-0.2344 % | 50.01 % | 3 |
Array
(
[2] => Array
(
[take_profit] => 0.1268
[stop_loss] => 0.1286
[rr_ratio] => 2
[closed_at] => 2025-08-02 08:00:00
[result] => win
)
[2.5] => Array
(
[take_profit] => 0.1265
[stop_loss] => 0.1286
[rr_ratio] => 2.5
[closed_at] => 2025-08-02 08:40:00
[result] => win
)
[3] => Array
(
[take_profit] => 0.1262
[stop_loss] => 0.1286
[rr_ratio] => 3
[closed_at] => 2025-08-02 10:35:00
[result] => win
)
[3.5] => Array
(
[take_profit] => 0.1259
[stop_loss] => 0.1286
[rr_ratio] => 3.5
[closed_at] => 2025-08-02 10:35:00
[result] => win
)
[4] => Array
(
[take_profit] => 0.1256
[stop_loss] => 0.1286
[rr_ratio] => 4
[closed_at] => 2025-08-02 11:45:00
[result] => win
)
[4.5] => Array
(
[take_profit] => 0.1253
[stop_loss] => 0.1286
[rr_ratio] => 4.5
[closed_at] => 2025-08-02 12:30:00
[result] => win
)
[5] => Array
(
[take_profit] => 0.125
[stop_loss] => 0.1286
[rr_ratio] => 5
[closed_at] => 2025-08-02 12:30:00
[result] => win
)
[5.5] => Array
(
[take_profit] => 0.1247
[stop_loss] => 0.1286
[rr_ratio] => 5.5
[closed_at] => 2025-08-02 12:30:00
[result] => win
)
)
Array
(
)
Array
(
[short_term] => Array
(
[max_gain] => 0.0017
[max_drawdown] => 0.00029999999999999
[rr_ratio] => 5.67
[high] => 0.12830000
[low] => 0.12630000
[mfe_pct] => 1.33
[mae_pct] => 0.23
[mfe_mae_ratio] => 5.67
[candles_analyzed] => 24
[start_at] => 2025-08-02T07:35:11-04:00
[end_at] => 2025-08-02T09:35:11-04:00
)
[long_term] => Array
(
[max_gain] => 0.0048
[max_drawdown] => 0.00029999999999999
[rr_ratio] => 16
[high] => 0.12830000
[low] => 0.12320000
[mfe_pct] => 3.75
[mae_pct] => 0.23
[mfe_mae_ratio] => 16
[candles_analyzed] => 84
[start_at] => 2025-08-02T07:35:11-04:00
[end_at] => 2025-08-02T14:35:11-04:00
)
[breakout] => Array
(
[high_before] => 0.12920000
[high_after] => 0.12830000
[low_before] => 0.12600000
[low_after] => 0.12470000
[is_new_high] =>
[is_new_low] => 1
)
)